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1. INTRODUCTION

In a recent paper, Wang [1] found some closed-form exact solutions for the vibrations of
two types of continuously non-homogeneous membranes, including the case of the
complete vibration spectrum of an annular membrane with density proportional to the
inverse square of the radius.

The spatial eigenfunctions for this latter case, with oJ1/r2, for an annulus of inner radius
a and unit outer radius, were shown in reference [1] to be of the form

cos(nh) sin[JK2!n2 ln(r)]. (1)

where n"0, 1, 2,2 is the angular index. K is a dimensional frequency parameter given
explicitly by
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where m"1, 2, 3,2 is the radial index. The gravest frequency (n"0, m"1), with a certain
normalization speci"ed in reference [1], was tabulated there for a range of radius ratios a,
0)a(1.

Actually, equation (2) for the frequency parameter was already obtained by De [2] in
1971, together with, implicitly, equation (1) for the eigenfunctions. The radially symmetric
case n"0 is interesting in that it results in a harmonic frequency spectrum for the radial
modes, with KJm. The frequencies and mode functions for this case have been known for
a very long time, e.g., reference [3]. They may also readily be obtained from the
constant-density string equation by a logarithmic transformation of the co-ordinate [4].

The purpose of this note is to draw attention to some other exact solutions for vibrations
of annular membranes with inhomogeneous densities, both continuously varying and
continuously varying with a step discontinuity. In terms of plane polar co-ordinates r, h, the
equation to be solved for the radial part of the displacement u (r) is
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together with the boundary conditions of "xed edges, where the angular function may be
taken as cos(nh), n"0, 1, 2,2, and u is the modal radian frequency of vibration. Here, o(r)
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is the radius-dependent density for the inhomogeneous membrane, and q is the tension
parameter, henceforth set equal to 1. In some cases it is possible to obtain the complete
spectrum in simple explicit analytical form; in other cases, it may be only the radial modes.

From equation (3) it may be seen that only in the case of inverse square radial dependence

o (r)"a/r2, (4)

with a constant, are the frequencies for asymmetrical motions nO0 immediately obtainable
from the radially symmetrical modes by the simple replacement of u2 by (u2!n2/a) (as in
equation (2) and similarly for the modal functions which remain unchanged in their
functional dependence on r (cf. equation (1)).

2. INVERSE FOURTH POWER RADIAL DENSITY

It was shown in reference [5] that an inhomogeneous annular membrane (R
1
)r)R

2
)

with inverse fourth power radial density
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(5)

has exactly the same complete vibration spectrum for all the modes as the congruent
homogeneous annular membrane with constant density o

0
. The eigenfunctions for the

inhomogeneous case are obtained from those of the homogeneous case, involving Bessel
functions of the "rst and second kinds for the radial part and trigonometric functions for the
angular part, by replacing the radius variable r by R

1
R

2
/r and leaving h unchanged.

This exact complete solution for this inhomogeneous annular membrane thus
supplements that of reference [1] for the inverse square case. It also shows that a complete
vibration spectrum does not uniquely determine the density structure of an annular
membrane.

3. INVERSE SQUARE WITH FOURTH POWER LOGARITHM RADIAL DENSITY

The radial (i.e., axisymmetric) modes of vibration of an annular membrane whose density
contains not only an inverse square radial term as in section 1 above but also an inverse
fourth power logarithmic term were solved for exactly in reference [4]. The membrane
occupies the annulus R
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(r(R

2
, with a"R

1
/R

2
(1. The density here is given by
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2
/r)]4

, (6)

where c is a &&distortion parameter'' corresponding to variation from the simple inverse
square form. The normalization criterion for density (6) is now presented to conform with
reference [1], i.e., the averaged density over the annulus area is here taken as unity:

2n P o (r) r dr"n (R2
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1
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so that here
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With some change in notation from reference [4], the radial function is given explicitly by
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The radial spectrum is harmonic (m"1, 2, 3,2) and takes the explicit values
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It is of interest to compare the overall gravest mode frequency of this annular membrane,
which is the lowest frequency of the radial spectrum, i.e., equation (10) with m"1, with the
gravest mode of the simple inverse square density annular membrane of Wang [1]
normalized similarly; henceforth, R

2
"1 is taken. First of all, it should be noticed that as

the distortion parameter cP0 (with inner radius aO0), equation (10) reduces to

u
1
Dc?0
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2

(1!a2) D ln a D
(11)

which is just Wang's expression (equation (15) in reference [1]) for the gravest case n"0,
m"1 there, as desired. On the other hand (for distortion parameter cO0), as inner radius
aP0 there results
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"nJ2
3
Jc (12)

which is non-zero. This curious result, which is unphysical insofar as the actual density
becomes singular at the origin as the annulus becomes a circle, is discussed in Appendix A.
In any case, if both a and c tend to zero in either order, then by equations (11) and (12), the
frequency approaches zero in agreement with the a"0 case of Table 2 in reference [1] for
the pure inverse square density membrane.

Values of the fundamental angular frequency parameter (equation (10) with m"1) are
tabulated in Table 1 for various values of a and c for comparison with the values for the
pure inverse square density annular membrane (c"0) as obtained in Table 2 of reference
[1] in addition to the homogeneous case. It is seen that, as for the case c"0 of reference [1],
TABLE 1

Fundamental angular frequency u
1
(eq. (10), m"1) of annular membrane, inner radius a, outer

radius R
2
"1, with radial density equations (6), (8); c"distortion parameter

c
a HOMOG1) 02) 0)001 0)01 0)1 1 10

03 2)405 0 0)08112 0)2565 0)8112 2)565 8)112
0)001 2)654 1)690 1)690 1)692 1)768 2)933 8)229
0)01 2)801 2)070 2)070 2)071 2)120 3)113 8)288
0)1 3)314 2)943 2)943 2)943 2)964 3)646 8)506
0)5 6)246 6)162 6)162 6)162 6)167 6)447 10)707
0)9 31)412 31)401 31)401 31)401 31)402 31)454 34)113

1Ref. [11].
2Equation (11); cf reference [1].
3Equation (12), for inhomogeneous membrane.
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the frequency for "xed c'0 increases as the inner radius a increases. However, for "xed a,
the frequency also increases as c increases from zero, and (unlike the c"0 case [1]) it
exceeds the homogeneous value by the time c"1.

4. SOME STEPPED CASES

4.1. STEPPED INVERSE SQUARE RADIAL DENSITY

In reference [6] it was shown that for a stepped inverse square density distribution
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the radial vibration spectrum is purely harmonic, as for the continuous case in section
1 above, provided that the constants d

1
and d

2
satisfy the relation
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The radial eigenfrequencies (for unit tension) are given by
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The eigenfunctions again consist of sine functions with logarithms of r in their arguments
[6].

This exact solution for the special stepped case complements the continuous case of
section 1, for the radial modes. However, the asymmetric modes are now not obtained by
a simple replacement of u as in the continuous case mentioned at the end of section 1,
because the coe$cient of 1/r2 in equation (13) is not constant throughout the membrane. An
explicit analytical expression for the frequencies of the angle-dependent modes is not
attainable in this instance, although they may be obtained numerically from the appropriate
characteristics equation for chosen values of d

i
.

4.2. STEPPED INVERSE SQUARE WITH FOURTH POWER LOGARITHM DENSITY

The ideas of sections 3 and 4.1 can be combined to given another new exactly solvable
case: the radial vibrations of an inhomogeneous membrane with a stepped density which
contains inverse square and fourth power logarithm terms in the density function. The
radial spectrum is again harmonic for a speci"c parameter ratio relation.

Let
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where
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where D
1
, D

2
and C are constants. The radial functions in each part of the membrane have

functional dependence on r similar in form to equation (9). Then, provided that
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the radial spectrum is found to be exactly pure harmonic: explicitly
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5. DISCUSSION

Closed-form exact solutions to vibration problems may be of two types. First, the exact
eigenfunctions are known explicitly in terms of standard functions and involve the
frequency parameter which satis"es an exact explicit characteristic equation which must be
solved numerically. Secondly, there is also an exact explicit analytical formula for the
frequencies themselves in terms of the system's physical parameters.

With regard to reference [1] and this paper, the "rst category includes the rectangular
membrane with a linear density variation as discussed in reference [1], and the following
cases presented above: inverse fourth power radial density, section 2, for all modes; stepped
inverse square radial density as in section 4.1, for all modes and parameter ratios; and
section 4.2 (radial modes) for general parameter ratios. The second category includes the
inverse square radial density annular membrane of reference [1] and section 1 above, for all
modes, and other cases in the present paper: inverse square with fourth power logarithm
radial density, section 3, radial modes; section 4.1, radial modes, when relation (14) is
satis"ed; and section 4.2, radial modes, when relation (17) is satis"ed.

This second category is especially useful for verifying computational methods and
algorithms.
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APPENDIX A: A CIRCULAR CASE

The "nite positive explicit limit, equation (12), for the fundamental frequency of the
circular limit aP0 of the annulus with density given by equation (6) may be understood as
follows. Setting outer radius R

2
"1 for convenience, the density is

o(r)"
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[1#c ln(1/r)]4
. (A1)
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Even though this becomes in"nite as r tends to zero, the mean density over the circular
region is still unity, i.e., "nite, in that, for cO0,

2 P
1

0

or dr"1, c"(3/2)c. (A2a, b)

Then the radial function is

v
m
(r)"[1#c ln(1/r)] sin Cmnc

ln(1/r)

1#c ln(1/r)D . (A3)

It satis"es the "xed boundary condition at r"1 and the Helmholtz equation (3) (with n"0
and q"1), with

u
m
"mnJ2

3
Jc , (A4)

in agreement with equation (12), even though v
m
(r) itself becomes in"nite at the centre of the

circle, i.e., as rP0. Thus the mean density may be normalized and the frequencies maintain
"nite values even though the density and radial function become unphysical as r approaches
the origin of the circle.

By contrast, for the pure inverse square density case, c"0 in equation (A1), the density
cannot be normalized over a complete circular region to have mean value 1 as in equation
(A2a).
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